Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.

Identifieur interne : 000294 ( Main/Exploration ); précédent : 000293; suivant : 000295

Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.

Auteurs : Luuk Koopal [République populaire de Chine] ; Wenfeng Tan [République populaire de Chine] ; Marcelo Avena [Argentine]

Source :

RBID : pubmed:32387754

Abstract

Aqueous sorption processes play an important role in, for example, pollutant binding to natural nanoparticles, colloid stability, separation and enrichment of components and remediation processes. In this article, which is a tribute to Hans Lyklema, models of localized (ad)sorption of molecules and ions from aqueous solution on homogeneous and heterogeneous nanoparticles are presented. The discussed models range from ideal monocomponent sorption on homogeneous (Langmuir) and heterogeneous sites, to multicomponent ideal sorption on homogeneous and heterogeneous sites, multicomponent multisite ion complexation with charge distribution (CD-MUSIC) and non-ideal competitive adsorption on heterogeneous sites (NICA). Attention is also paid to lateral interaction, site-induced aggregation, binding stoichiometry and multilayer formation. Electrical double layer models are discussed in relation to ion binding on impermeable and permeable nanoparticles. Insight in models that can describe sorption of molecules and ions on nanoparticles leads to awareness of the limitations of using simple models for complex systems and is needed for the selection and application of an appropriate model for a given system. This is relevant for all practical sorption processes and for a better understanding of the role of natural nanoparticles in the binding of nutrients and pollutants.

DOI: 10.1016/j.cis.2020.102138
PubMed: 32387754


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.</title>
<author>
<name sortKey="Koopal, Luuk" sort="Koopal, Luuk" uniqKey="Koopal L" first="Luuk" last="Koopal">Luuk Koopal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tan, Wenfeng" sort="Tan, Wenfeng" uniqKey="Tan W" first="Wenfeng" last="Tan">Wenfeng Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avena, Marcelo" sort="Avena, Marcelo" uniqKey="Avena M" first="Marcelo" last="Avena">Marcelo Avena</name>
<affiliation wicri:level="1">
<nlm:affiliation>INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina. Electronic address: mavena@uns.edu.ar.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca</wicri:regionArea>
<wicri:noRegion>Bahía Blanca</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32387754</idno>
<idno type="pmid">32387754</idno>
<idno type="doi">10.1016/j.cis.2020.102138</idno>
<idno type="wicri:Area/Main/Corpus">000273</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000273</idno>
<idno type="wicri:Area/Main/Curation">000273</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000273</idno>
<idno type="wicri:Area/Main/Exploration">000273</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.</title>
<author>
<name sortKey="Koopal, Luuk" sort="Koopal, Luuk" uniqKey="Koopal L" first="Luuk" last="Koopal">Luuk Koopal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tan, Wenfeng" sort="Tan, Wenfeng" uniqKey="Tan W" first="Wenfeng" last="Tan">Wenfeng Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avena, Marcelo" sort="Avena, Marcelo" uniqKey="Avena M" first="Marcelo" last="Avena">Marcelo Avena</name>
<affiliation wicri:level="1">
<nlm:affiliation>INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina. Electronic address: mavena@uns.edu.ar.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca</wicri:regionArea>
<wicri:noRegion>Bahía Blanca</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in colloid and interface science</title>
<idno type="eISSN">1873-3727</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aqueous sorption processes play an important role in, for example, pollutant binding to natural nanoparticles, colloid stability, separation and enrichment of components and remediation processes. In this article, which is a tribute to Hans Lyklema, models of localized (ad)sorption of molecules and ions from aqueous solution on homogeneous and heterogeneous nanoparticles are presented. The discussed models range from ideal monocomponent sorption on homogeneous (Langmuir) and heterogeneous sites, to multicomponent ideal sorption on homogeneous and heterogeneous sites, multicomponent multisite ion complexation with charge distribution (CD-MUSIC) and non-ideal competitive adsorption on heterogeneous sites (NICA). Attention is also paid to lateral interaction, site-induced aggregation, binding stoichiometry and multilayer formation. Electrical double layer models are discussed in relation to ion binding on impermeable and permeable nanoparticles. Insight in models that can describe sorption of molecules and ions on nanoparticles leads to awareness of the limitations of using simple models for complex systems and is needed for the selection and application of an appropriate model for a given system. This is relevant for all practical sorption processes and for a better understanding of the role of natural nanoparticles in the binding of nutrients and pollutants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32387754</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3727</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>280</Volume>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Advances in colloid and interface science</Title>
<ISOAbbreviation>Adv Colloid Interface Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.</ArticleTitle>
<Pagination>
<MedlinePgn>102138</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0001-8686(19)30372-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cis.2020.102138</ELocationID>
<Abstract>
<AbstractText>Aqueous sorption processes play an important role in, for example, pollutant binding to natural nanoparticles, colloid stability, separation and enrichment of components and remediation processes. In this article, which is a tribute to Hans Lyklema, models of localized (ad)sorption of molecules and ions from aqueous solution on homogeneous and heterogeneous nanoparticles are presented. The discussed models range from ideal monocomponent sorption on homogeneous (Langmuir) and heterogeneous sites, to multicomponent ideal sorption on homogeneous and heterogeneous sites, multicomponent multisite ion complexation with charge distribution (CD-MUSIC) and non-ideal competitive adsorption on heterogeneous sites (NICA). Attention is also paid to lateral interaction, site-induced aggregation, binding stoichiometry and multilayer formation. Electrical double layer models are discussed in relation to ion binding on impermeable and permeable nanoparticles. Insight in models that can describe sorption of molecules and ions on nanoparticles leads to awareness of the limitations of using simple models for complex systems and is needed for the selection and application of an appropriate model for a given system. This is relevant for all practical sorption processes and for a better understanding of the role of natural nanoparticles in the binding of nutrients and pollutants.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koopal</LastName>
<ForeName>Luuk</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Wenfeng</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avena</LastName>
<ForeName>Marcelo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina. Electronic address: mavena@uns.edu.ar.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Adv Colloid Interface Sci</MedlineTA>
<NlmUniqueID>8706645</NlmUniqueID>
<ISSNLinking>0001-8686</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Binding stoichiometry</Keyword>
<Keyword MajorTopicYN="N">Heterogeneous binding sites</Keyword>
<Keyword MajorTopicYN="N">Ion binding</Keyword>
<Keyword MajorTopicYN="N">Monocomponent adsorption</Keyword>
<Keyword MajorTopicYN="N">Multicomponent adsorption</Keyword>
<Keyword MajorTopicYN="N">Site-induced aggregation</Keyword>
</KeywordList>
<CoiStatement>Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32387754</ArticleId>
<ArticleId IdType="pii">S0001-8686(19)30372-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.cis.2020.102138</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Hubei</li>
</region>
<settlement>
<li>Wuhan</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Hubei">
<name sortKey="Koopal, Luuk" sort="Koopal, Luuk" uniqKey="Koopal L" first="Luuk" last="Koopal">Luuk Koopal</name>
</region>
<name sortKey="Tan, Wenfeng" sort="Tan, Wenfeng" uniqKey="Tan W" first="Wenfeng" last="Tan">Wenfeng Tan</name>
</country>
<country name="Argentine">
<noRegion>
<name sortKey="Avena, Marcelo" sort="Avena, Marcelo" uniqKey="Avena M" first="Marcelo" last="Avena">Marcelo Avena</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32387754
   |texte=   Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32387754" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021